Quantcast
Channel: InfoQ - 促进软件开发领域知识与创新的传播
Viewing all articles
Browse latest Browse all 1638

如何基于 TensorFlow 2.0 用十行代码实现性能最佳的 NLP 模型?

$
0
0

TensorFlow 在自然语言处理中占有重要的一席之地。Transformer 是由 Google 在 Attention Is All You Need 这篇论文中提出,其后可谓红遍大江南北,到目前为止仿佛有种“此生不识 Transformer,就称英雄也枉然”的感觉。本文讲述了如何基于 TensorFlow 2.0 实现最佳性能的自然语言处理模型,而且仅仅只需十行代码即可实现。

Hugging Face 是领先的自然语言处理初创公司,包括 Bing、Apple、Monzo 在内,有一千多家公司在生产环境中使用他们的库。本文中使用的所有示例,都可以在 Colab 上找到。这些链接可以在相应部分中找到。

介绍

Hugging Face 是一家专注于自然语言处理的初创公司,它拥有一个大型开源社区,尤其是 Transformers库相关。🤗 Transformer 是一个基于 Python 的库,它公开了 API 来使用许多知名的 Transformer 架构,例如 BERTRoBERTaGPT-2DistilBERT等,这些架构在各种自然语言处理任务(如文本分类、信息提取、问题回答和文本生成等)上获得最先进的结果。这些架构都已经经过几组权重的预训练。要开始使用 Transformer,只需安装 Pip 包:

pip install transformers

该库在 PyTorch 中实现了超高速的增长,最近被移植到 TensorFlow 2.0 上,提供了一个 API,这个 API 现在可以与 Keras 的 fit API、TensorFlow Extended 和 TPU 一起使用 👏。本文专门介绍如何使用 TensorFlow 来使用 Transformer 库:使用 Keras API 和 TensorFlow TPUStrategy 来对最先进的 Transformer 模型进行微调。

库及其哲学

Transformer 是基于预训练的 Transformer 模型的概念。这些 Transformer 模型具有不同的形状、大小和架构,并且有自己接收输入数据的方式:通过标记化(tokenization)。


Viewing all articles
Browse latest Browse all 1638

Trending Articles