摘要:
对关系的理解越深,洞察就越有力。有了足够多的关系数据点,你甚至可以预测未来。但是,随着关联的数据越多,关联数据的大小和复杂度就会增长,数据关系的存储和查询就会变得更复杂。为了更高效地处理数据间的关系,使用图数据库就是一个很好的选择。
正文:
你有没有接到过银行的电话,因为他们怀疑你有欺诈行为?当支付模式或地点偏离了常态时,大部分银行能够自动识别并立即行动。很多时候,这种情况发生在受害者还没有注意到损失之前。这样一来,身份盗窃行为严重影响一个人的银行账号和生活之前就可以得到有效处理。
只要对你的数据之间的联系有一个深刻的理解,就可以像上述案例那样获得强大的能力。
考虑疾病和基因交互之间的关系。理解这些关系后,你就可以在蛋白质结构中寻找到与疾病有关的其它基因。这种信息有助于改进疾病研究工作。
对关系的理解越深,洞察就越有力。有了足够多的关系数据点,你甚至可以预测未来(比如使用推荐引擎)。但是,随着关联的数据越多,关联数据的大小和复杂度就会增长,数据关系的存储和查询就会变得更复杂。
8月份,我写了一篇关于现代应用程序开发和将通用的单体数据库分解成专门用途的数据库的价值的文章。专门用途的数据库支持各种数据模型,允许客户构建用例驱动的、高扩展性的、分布式应用程序。挖掘数据关系是很好的例子,说明了为什么拥有合适的工具很重要。图数据库是处理高度关联的数据的绝佳工具。