Quantcast
Channel: InfoQ - 促进软件开发领域知识与创新的传播
Viewing all articles
Browse latest Browse all 1638

经典分类模型朴素贝叶斯解读 | NLP专栏

$
0
0

贝叶斯分类器在早期的自然语言处理任务中有着较多实际的应用,例如大部分的垃圾邮件处理都是用的贝叶斯分类器。贝叶斯分类器的理论对于理解后续的NLP模型有很大的进益,感兴趣的小伙伴一定要好好看看,本文会详细的讲述贝叶斯分类器的原理。

贝叶斯决策论

贝叶斯决策论是在统计概率框架下进行分类决策的基本方法。对于分类任务来说,在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来预测分类。

假设在一个分类任务中,有N种可能的分类,y={c1,c2,c3,…,cN}。我们会这样定义将一个样本预测为ci的期望损失,又叫“条件风险”:

1、其中lambda_i_j,是将一个第j类样本预测为i类的损失;2、P(c_j|x)表示为将样本x预测为j类的概率

那么学习的任务是什么呢?

学习任务是寻找一个判定准则,利用该判定准则(分类器)进行分类预测,能够最小化条件风险:


Viewing all articles
Browse latest Browse all 1638

Latest Images

Trending Articles