近日,美图影像实验室MTlab针对低清画质推出高效的人像画质修复算法,轻松解决图片被压缩,亦或是由于夜拍、抓拍或是抖动造成的照片模糊、失焦等问题。美图人像画质修复算法在自研的超清人像生成网络结构 BeautyGAN(Beauty Generative Adversarial Networks)基础上,从美图数以亿计的海量人像数据中学习,使其具备人像画质修复能力,最大程度还原人像原有的脸部信息,重新定义低清画质的宽容度(Portrait Redefinition)。本文将对这一人像画质修复算法进行深入解读。
左:原图,右:修复结果
一、导语
日前,林青霞的一组复古照片在各大社交媒体平台引起了广泛关注与热议,成功将“AI老照片修复”带入大众视野,也让更多人近距离感受到黑科技的魅力所在。由于早期拍摄设备的配置有限,手机像素比较低,又或是图片经过多次的网络转载和压缩,使得很多老照片画质受损严重,清晰度较差。而随着AI的不断发展,尤其是生成技术的发展,使智能修复老照片成为可能。老照片往往承载着许多回忆,甚至是许多人的情感寄托,然而模糊老旧的照片已经无法满足用户日趋严格的审美需求。为了解决这一痛点,美图影像实验室MTlab作为美图核心技术研发部门,推出了人像画质修复技术,通过便捷的一键操作就能高清还原老照片中的人像。事实上,除了老照片修复外,还可以修复的场景包括模糊、失焦、压缩等各类低清人像画质照片。
借鉴前沿的深度学习技术,如降噪、增强、超分、强化学习等,在生成网络的基础上,结合大量的对抗式生成网络的前沿技术,进一步加强了美图影像实验室MTlab自研的生成网络结构 BeautyGAN的生成能力。美图凭借自身强大的数据基础,使BeautyGAN具备良好的人像修复能力,最大程度还原人像原有的脸部信息。通过网络结构和训练方案的不断优化,提高修复的效率,让用户无需等待,数秒内即可看到人像修复的结果。
二、人像画质修复完整流程
针对一张待修复的图片,一般分两步来处理。首先利用人脸点抠取脸部,对脸部做修复,使其变清晰;其次对全图进行去彩噪、去噪、去马赛克、去jpeg压缩、去模糊、去轻微抖动等画质修复操作,从而达到画质增强的效果。